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Abstract

Gaze estimation across domains has been explored re-
cently because the training data are usually collected under
controlled conditions while the trained gaze estimators are
used in nature and diverse environments. However, due to
privacy and efficiency concerns, simultaneous access to an-
notated source data and to-be-predicted target data can be
challenging. In light of this, we present an unsupervised
source-free domain adaptation approach for gaze estima-
tion, which adapts a source-trained gaze estimator to unla-
beled target domains without source data. We propose the
Uncertainty Reduction Gaze Adaptation (UnReGA) frame-
work, which achieves adaptation by reducing both sample
and model uncertainty. Sample uncertainty is mitigated by
enhancing image quality and making them gaze-estimation-
friendly, whereas model uncertainty is reduced by minimiz-
ing prediction variance on the same inputs. Extensive ex-
periments are conducted on six cross-domain tasks, demon-
strating the effectiveness of UnReGA and its components.
Results show that UnReGA outperforms other state-of-the-
art cross-domain gaze estimation methods under both pro-
tocols, with and without source data. The code is available
at https://github.com/caixin1998/UnReGA.

1. Introduction
Gaze encodes rich information about the attention and

psychological factors of an individual. Techniques that use
eye tracking to infer human intentions and understand hu-
man emotions have found an increasingly wide utilization in
fields including human-computer interaction [20,35,36], af-
fective computing [11], and medical diagnosis [21,46]. The
most prevalent way to estimate human gaze is using com-
mercial eye trackers, which suffer from high cost or custom
invasive hardware. To overcome the limitation on devices
and environments, researchers have made great progress on
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Figure 1. (a) The source-trained model shows high uncertainty on
samples from different domains. (b) Statistics of errors and model
uncertainty by the same gaze estimator on different samples. The
error increases as the uncertainty grow. (c) To accomplish unsu-
pervised source-free domain adaptation, the UnReGA reduces the
sample uncertainty by enhancing the input images and reduces the
model uncertainty by minimizing the prediction variance.

appearance-based gaze estimation methods with the devel-
opment of deep learning [4, 6, 12, 56, 57].

Notwithstanding the achievements, the appearance-
based gaze estimators meet the most challenging problem
that their performance drops significantly when they are
trained and tested on different domains, e.g., the domains
with different subjects, image quality, background environ-
ments, or illuminations. Usually, gaze estimators are trained
on the data collected under controlled conditions where true
gaze is feasible to be measured and recorded by the de-
ployed devices. Then, these gaze estimators would be ap-
plied under a much different and uncontrolled environment.

To adapt the source-data-trained model to the target data,
researchers propose methods to narrow the gap between the
different domains [16, 34, 42, 45]. Most of the methods re-
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quire data from both the source and target domains during
the adaptation. However, in the application of gaze esti-
mation, the source data is likely to be neither available nor
efficient during the adaptation. First, most gaze models
are trained with face images which might be not accessi-
ble due to privacy or bandwidth issues. Secondly, process-
ing source data might not be computationally practical in
real-time gaze estimation on the target domain. Therefore,
we formulate gaze estimation as an unsupervised source-
free domain adaptation problem, where we cannot access
the source data when fitting the model to the target.

To address the source-free domain adaptation issue, we
propose to adapt the source-trained gaze estimators to the
target domain by reducing both the sample uncertainty and
model uncertainty on the unlabeled target data. Sample un-
certainty captures noise inherent in the input images, such
as sensor noise and motion blur, which is also referred to as
aleatoric uncertainty [24]. Model uncertainty is determined
by the inconsistency of predication or model perturbations,
which is also referred to as epistemic uncertainty [15, 24].
We formulate it as the variance of different estimators’ pre-
dictions on the same sample. We assume that reducing the
two uncertainties helps to reduce the gaze estimator’s er-
rors across different domains due to three observations: 1)
Estimators show high model uncertainty on samples that
are distributed far away from the training data and show
low uncertainty on the nearby samples [24, 28]. As shown
in Fig. 1(a), the ETH-XGaze-trained estimator has average
model uncertainties of 0.66, 0.98, and 1.21 on the samples
from ETH-XGaze [53], MPIIGaze [57], EyeDiap [14], re-
spectively. EyeDiap has the most different distribution from
ETH-XGaze and shows the highest model uncertainty. 2)
Reducing the sample uncertainty pulls together the source
and target data, and accordingly reduces the estimator’s
model uncertainty on target data. In Fig. 1(a), the model un-
certainties on MPIIGaze/EyeDiap decrease when we reduce
the sample uncertainty by image enhancement, because by
doing this, we reduce the image quality discrepancy be-
tween MPIIGaze/EyeDiap and ETH-XGaze. 3) Model un-
certainty empirically shows a positive correlation with gaze
estimation error in cross-domain scenarios. Fig. 1(b) plots
how the errors change with model uncertainty. We train 10
gaze estimators from ETH-XGaze and then, for each sam-
ple in MPIIGaze, we compute the model uncertainty and the
mean error of the estimators’ predictions. We sort the sam-
ples by the model uncertainty in ascending order and group
them by every 10-th percentile. The height of each bar in
Fig. 1(b) denotes the averaged mean error over the samples
within each group. As can be seen, the top 10 percent of the
model uncertainty corresponds to the smallest error.

To this end, we propose an Uncertainty Reduction
Gaze Adaption (UnReGA) framework that accomplishes
the source-free adaptation by minimizing both the sample

and model uncertainty. As illustrated in Fig. 1(c), we first
transfer the input images into a gaze-estimation-friendly do-
main by introducing a face enhancer to enhance input im-
ages without changing the gaze. Rather than low-quality
images, high-quality images convey more details about the
eyes and contribute to less sample uncertainty and better
generalization ability of the source-trained gaze estimators.
Next, we update an ensemble of source gaze estimators by
minimizing the variance of their predictions on the unla-
beled target data. Finally, we merge the updated estimators
into a single model during inference. Our empirical exper-
iments demonstrate that the updated estimator outperforms
the not-adapted source estimator on the target domain.

Our contributions are summarized as:
1. We formulate gaze estimation as an unsupervised

source-free domain adaptation problem and propose
an Uncertainty Reduction Gaze Adaption (UnReGA)
framework that adapts the trained model to target do-
main without the source data by reducing both the sam-
ple uncertainty and model uncertainty.

2. We propose the variance minimization and pseudo-
label supervision mechanisms in UnReGA to address
the adaptation issue without source data for regres-
sion tasks, while most existing source-free adapta-
tion methods are designed for classification tasks. We
validate the effectiveness of the two mechanisms in
source-free adaptive gaze estimation.

3. We evaluate the efficacy of UnReGA and its com-
ponents on cross-domain gaze estimation tasks. Ex-
tensive experiments show UnReGA outperforms other
state-of-the-art cross-domain gaze estimation methods
under both protocols, with and without source data.

2. Related Work
Cross-domain Gaze Estimation: With the development

of deep learning, many efforts are made in appearance-
based gaze estimation [1,7,9,12,37,38,55] to reduce predic-
tion errors on public gaze datasets [12,14,23,40], e.g., MPI-
IGaze [57], ETH-XGaze [53] and GazeCapture [26]. How-
ever, training data for these estimators are often collected
under controlled conditions, limiting their applicability in
diverse real-world scenarios. Therefore, recent studies have
explored gaze estimation methods across domains.

According to the availability of the source and unlabeled
target data, we review the cross-domain gaze estimation
methods under three settings: domain generalization [44],
unsupervised domain adaptation with source data [49], un-
supervised domain adaptation without source data [32].

For domain generalization, the target domain is unknown
so we do not adapt the gaze estimator to a specific domain
but improve its generalization ability across different do-
mains during the training. Park et al. [37] proposed to learn
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Figure 2. Illustration of the UnReGA framework with three stages. In the training stage on source data (top), we train the face enhancer
and the gaze estimator using source data. In the source-free adaptation stage(middle), we update the set of gaze estimators from different
training iterations by two mechanisms (variance minimization and pseudo-label supervision) to reduce the model uncertainty and preserve
the gaze estimation ability. In the inference stage on target data (bottom), we predict the gaze by the mean estimator.

a rotation-aware latent representation of gaze and Cheng et
al. [5] proposed to extract domain-agnostic gaze feature to
improve the methods’ generalization capabilities.

For domain adaptation with source data, existing meth-
ods utilize labeled source data and unlabeled target data.
These methods simultaneously minimize prediction errors
on the source data while adapting the model to the target
domain using various techniques, e.g., adversarial learning
[45], outlier guidance [34], and contrastive regression [3].

For domain adaptation without source data, optimizing
gaze estimators’ performance on both source and target do-
mains simultaneously is impractical. Although the strate-
gies in [3, 34] are feasible to adapt the model to the target
domain, their performance drops when the supervision from
the source domain is absent. Because without the supervi-
sion of the true gaze, the models lose their gaze estima-
tion ability. To address this, Bao et al. [2] proposed a self-
training strategy by keeping rotation consistency on aug-
mented target images for adaptation without source data.

Source-free Domain Adaptation: The domain adapta-
tion problem without source data is also explored in other
computer vision tasks, e.g., image classification [29,32], se-
mantic segmentation [13, 27] and object detection [30, 31].
To solve this problem, existing works leverage the knowl-

edge hidden in the source model by pseudo-labeling [13,
32], feature alignment [10, 50, 51], self-supervised learn-
ing [3,18,33,41], batch normalization adaptation [39] et al.
Most of the methods are designed for classification prob-
lems but might fail in regression. Our proposed method ad-
dresses the issue in gaze estimation, which is a regression
problem. We are inspired by the work [24], which com-
putes uncertainty with an ensemble of models to measure
the domain shift, to reduce cross-domain gaze errors by re-
ducing uncertainty. Similarly, regarding entropy as a mea-
sure of uncertainty, the source-free adaptation method us-
ing Entropy Minimization [13, 32, 43, 58] accomplishes the
adaptation by reducing uncertainty in classification tasks.

3. Uncertainty Reduction Gaze Adaptation
We present the Uncertainty Reduction Gaze Adaptation

(UnReGA) framework to solve the unsupervised source-
free domain adaptation problem for gaze estimation.

3.1. Problem Definition
Let Ds = {(Isi ,gis)}

Ns
i=1 be the source domain data,

where Isi and gs
i represent the i-th image and its true gaze

label, respectively. The source domain consists of Ns sam-
ples, which are typically obtained under controlled condi-



tions where ground truth labels are available. Let Dt =
{Iti}

Nt
i=1 denote the target domain images captured under

different conditions in real-world scenarios. The goal of
unsupervised source-free domain adaptation is to estimate
the gaze of the target images when we cannot access to the
source and target data simultaneously. Thus, we train the
source models on the source data without knowledge of the
target data and then adapt these models to the unlabelled
target data in absence of the source data.

3.2. UnReGA Framework
To solve the unsupervised source-free domain adaptation

in gaze estimation, we propose an Uncertainty Reduction
Gaze Adaptation (UnReGA) framework, which makes the
pre-trained gaze estimators suitable for the target data by re-
ducing their uncertainties on the target. Fig.2 illustrates the
UnReGA framework, which comprises three stages: source
model training, source-free adaptation and inference on tar-
get data. In the training on source data, we train the face en-
hancer and the gaze estimator with the enhanced images as
input. The face enhancer reduces the sample uncertainty by
improving the input images’ quality and makes them more
suitable for gaze estimation across domains. We keep a set
of trained gaze estimators at different iterations during the
training process for the next adaptation stage. In source-
free adaptation, the set of gaze estimators is updated by the
variance minimization mechanism and pseudo-label mech-
anism. The two mechanisms reduce the model uncertainty
on target data and preserve the models’ ability in accurate
gaze estimation. In inference, by taking the mean parame-
ters of the updated estimators, the set of models is merged
into a single one, which is used to predict the gaze for target
images. Below, we present details of the three stages.

3.3. Training on Source Data
We collaboratively train a gaze-estimation-friendly

keeping-gaze face enhancer and gaze estimator during the
training stage. The collaboration improves the generaliza-
tion ability of the gaze estimator on different domains, al-
though they are trained on the source data without knowl-
edge of the target domain. Fig. 3 shows how we train the
face enhancer and gaze estimator. We first pretrain the gaze
estimator and the face enhancer respectively, and then fine-
tune the face enhancer and the gaze estimator sequentially.

Pretrain the gaze estimator: We employ a ResNet18
[17] as the gaze estimator G(·; θ). It is pretrained on the
annotated source data Ds = {(Isi ,gs

i )}
Ns
i=1 by minimizing

the discrepancy between the prediction and the true gaze:
min
θ
E(Is

i ,g
s
i )∈Ds

∥G(Isi ; θ),gs
i ∥1, (1)

where G(Isi ; θ) and gs
i is the prediction and the true label

of the original source image Isi , respectively.
Pretrain the face enchancer: We employ a general im-

age super-resolution model Real-ESRGAN [47] as the face
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Figure 3. Training strategy on source data. First, we pretrain a face
enhancer with a set of high-quality images(in green part). Second,
we finetune the face enhancer by adding the gaze consistent con-
straints for both the labeled source images and unlabelled images
(in the blue rectangle). Third, we finetune the gaze estimator with
an enhanced source (in the grey part).

enhancer F(·;ϕ) by removing the last up-sample module of
Real-ESRGAN and ensuring the input and output to be of
the same resolution. The green part in Fig. 3 illustrates how
we pretrain F(·;ϕ) on a high-quality image dataset. Given
the high quality image Ih, we degrade its quality through
degradation methods in [47]. Then, we fed the degraded
image I l into the face enhancer and obtain the enhanced on
Ĩ l. Similar to [47], to train the face enhancer, we force the
generated image Ĩ l and the original Ih to be consistent and
un-distinguishable by minimizing a reconstruction loss and
adopting an adversarial mechanism.

Finetune the face enchancer: Although recovering de-
tails of the face, the pretrained face enhancer is likely to
change the gaze by changing the eyes’ appearance. To keep
the gaze unchanged, we finetune the face enhancer by forc-
ing the enhanced images to have the same gaze as the label
or as the one from the original image. The blue rectangle
in Fig. 3 shows how we finetune the face enhancer. For the
image Is in the source domain, we enhance it into Ĩs by
the face enhancer and then predict its gaze using the gaze
estimator G(·; θ). We require the predictions G(Ĩs; θ) to be
consistent with the true gaze by minimizing the gaze esti-
mation loss ℓg over all the source data:

min
ϕ

ℓg = min
ϕ
E(Is,gs)∈Ds

∥G(Ĩs; θ),gs∥1. (2)

For high-quality images, we optimize the reconstruction
loss and adversarial loss as we do in the pretraining stage.
Additionally, we force the original high quality Ih and the
enhanced low quality Ĩ l to have the same predictions by
minimizing the gaze consistent loss ℓgc:

min
ϕ

ℓgc = min
ϕ
EIh∈Dh

∥G(Ĩ l; θ),G(Ih; θ)∥1, (3)

where Dh is the set of high quality images. G(Ĩ l; θ) and
G(Ih) are gaze predictions of Ĩ l and Ih, respectively.



In summary, we finetune the parameters ϕ of the face
enhancer by freezing the gaze estimator and minimizing the
sum of ℓg , ℓgc, and the losses ℓpre used in the pretraining
the face enhancer [47] as: minϕ ℓg + ℓgc + ℓpre.

Finetune the gaze estimator: The grey part in Fig. 3
shows the finetuning procedure. Freezing the parameters of
the face enhancer, we update the parameter θ of the gaze
estimator to boost its performance on the enhanced images.
The objective is:

min
θ
E(Is,gs)∈Ds

∥G(Ĩs; θ),gs∥1, (4)

where Ĩs is the enhanced source image.
After training on source data, we obtain a keeping-gaze

face enhancer and a gaze estimator that predicts gaze for
the enhanced images. It is noted that we keep a set of gaze
estimators from different iterations during the finetuning of
the gaze estimator, which will be used in the next stage of
source-free adaptation.

3.4. Source-free Adaptation
During the adaptation stage, we only have access to the

unlabelled target data and the source model without the
source data. To adapt the trained gaze estimators from
different iterations to the unlabelled target data, we unsu-
pervised update the estimators’ parameters by minimizing
the model uncertainty and preserving the models’ ability in
gaze estimation via pseudo-labels. The process of unsuper-
vised source-free adaptation is depicted in the middle row
of Fig. 2. Specifically, UnReGA enhances the quality of the
target image It using the trained FaceEnhancer, yielding the
enhanced image Ĩt. Then, Ĩt is fed into two branches: vari-
ance minimization and pseudo-label supervision.

Variance Minimization: In the upper branch(variance
minimization), UnReGA forces the set of source estimators
to have low model uncertainty on the enhanced target im-
age Ĩt. As discussed in the introduction, minimizing the
model uncertainty helps to reduce the estimation errors in
target data. Inspired by [28], we formulate model uncer-
tainty as the variance of the predictions by the set of mod-
els on the same input image. Let {G(·; θk)}Kk=1 denote the
set of trained estimators, where G(·; θk) is the k-th model
with learned parameters θk and K is the number of mod-
els. In this work, the K models are saved checkpoints from
K different training iterations when we finetune the gaze
estimator on the source. They have the same architecture
but different parameter values. We update the parameters
{θk}Kk=1 by minimizing the model uncertainty over target
data as:

min
{θk}K

k=1

ℓvm = min
{θk}K

k=1

1

K

K∑
k=1

(
ĝt
k − 1

K

K∑
k=1

ĝt
k

)2

, (5)

where ĝt
k = G(Ĩt; θk) denotes the prediction of the

enhanced target image Ĩt by the k-th model G(·; θk).
1
K

∑K
k=1 ĝ

t
k is the mean prediction by all the K models.

Pseudo-Label Supervision: To preserve the ability in
gaze estimation during adaptation, we introduce pseudo-
labels to supervise the gaze prediction in target. Since di-
rectly using the output of the gaze estimators in the variance
minimization branch as the pseudo label may accumulate
errors, we generate pseudo labels by employing the tempo-
ral average of the models to reduce the accumulated errors.

As can be seen in Fig. 2, we maintain a temporal average
version of each estimator G(·; θk) as G(·; θTk ) at the T -th
iteration during adaptation. The parameters θTk is updated
as:

θTk =
T

1 + T
θ
(T−1)
k +

1

1 + T
θTk . (6)

Then, the pseudo-label pt
T of the image Ĩt at the T -th it-

eration is defined as its mean predictions by the temporal
averaged estimators {G(·; θTk )}Kk=1:

pt
T =

1

K

K∑
i=1

ĝT
k =

1

K

K∑
i=1

G(Ĩt; θTk ), (7)

where ĝT
k = G(Ĩt; θTk ) is the prediction by the k-th tempo-

ral average model at the T -th iteration.
To preserve reliable gaze estimation, we require the pre-

dictions of the to-be-learned gaze estimators not to drift
away from the pseudo-label by minimizing:

ℓwpl =
1

K

K∑
i=1

ωt|ĝt
k − pt

T |, (8)

where ĝt
k is the prediction on Ĩt by the k-th estimator. ωt =

1/
√
ℓvm(It) weighs the reliability of each It’s pseudo-

label which has a negative correlation with the model un-
certainty of It. It is noted that we regard ωt as a coefficient
and do not back-propagate gradients through it.

Objective Function for adaptation: During the source-
free adaptation stage, only the set of source gaze estimators
{G(·; θk)}Kk=1 are updated by minimizing the sum of ℓvm
and ℓwpl over all the target data:

min
{θk}K

k=1

EIt∈D′
t
[ℓvm(It) + γℓwpl(I

t)], (9)

where D′
t ⊆ Dt is a subset of target data, γ is the weight

parameter to balance two losses. It is noting that a small set
of target data is sufficient for the adaptation.

3.5. Inference on target data
The last row of Fig. 2 shows the pipeline of inference.

Given a new image in the target domain, we predict the
gaze by sequentially passing it through the face enhancer
trained from source data(Sec. 3.3) and the mean estimator
G(·, θ⋆) of the K gaze estimators {G(·, θTk )}Kk=1 updated
on target data(Sec. 3.4). The mean estimator’s parameters
θ⋆ = 1

K

∑K
k=1 θ

T
k is set as the mean value of those in

{G(·, θTk )}Kk=1. Using the mean parameters has less com-
putation cost than using the mean predictions and leads to
better generalization than a single model [19].



Table 1. Angular gaze errors(◦) of the baseline method and the variants of UnReGA on six cross-domain tasks

Method
Average

Parameters
Image

Enhancement
Source-free
Adaptation DE → DM DE → DD DE → DC DG → DM DG → DD DG → DC

Baseline × × × 7.50 7.88 7.81 7.23 8.02 9.49
ModelAvg ✓ × × 7.18 ▼ 4.2% 7.25 ▼ 8.0% 7.31 ▼ 6.4% 6.90 ▼ 4.6% 7.32 ▼ 8.7% 8.78 ▼ 7.4%

EnhanceFace ✓ ✓ × 5.92 ▼ 21.1% 6.31 ▼ 19.9% 6.62 ▼ 15.2% 6.52 ▼ 9.9% 7.05 ▼ 12.1% 7.83 ▼ 17.5%
UnReGA− ✓ × ✓ 5.35 ▼ 28.9% 6.06 ▼ 23.1% 5.91 ▼ 24.3% 5.58 ▼ 22.8% 5.84 ▼ 27.2% 6.80▼ 28.3%

UnReGA(w/o avg) × ✓ ✓ 5.15 ▼ 31.3% 5.81 ▼ 26.3% 5.84 ▼ 25.2% 5.45 ▼ 24.6% 5.78 ▼ 27.9% 6.58▼ 30.7%
UnReGA ✓ ✓ ✓ 5.11 ▼ 32.3% 5.70 ▼ 27.7% 5.75 ▼ 26.4% 5.42 ▼ 25.0% 5.80 ▼ 27.7% 6.52▼ 31.3%

4. Experiments
Through extensive experiments on cross-domain gaze

estimation tasks, we investigate the effectiveness of the Un-
ReGA framework and its components. We also discuss the
advantage of uncertainty reduction.

4.1. Data Preparation
We employ five different gaze estimation datasets as five

different domains: ETH-XGaze(DE) [53], Gaze360(DG)
[23], GazeCapture(DC) [26], MPIIGaze(DM ) [57], and
EyeDiap(DD) [14]. ETH-XGaze and Gaze360 are chosen
as the source domains and the other three are target do-
mains. We train our models on each source domain and test
their adaptation performance on each target domain respec-
tively. In addition, we use FFHQ [22] as our high quality
face dataset Dh to train the face enhancer. ETH-XGaze is
collected in a laboratory environment with 18 SLR cameras.
It contains 756,540 high quality face images of 80 subjects.
Gaze360 is collected in both indoor and outdoor environ-
ments with a 360◦ camera. It contains images from 238
subjects with a wide distribution over gaze. Similar to [3,8],
we use 84900 images with frontal faces as the source data.
MPIIFaceGaze is collected in the daily environment with
laptops from 15 subjects. We use 3000 face images from
each subject as the target data. GazeCapture is collected in
the daily environment with mobile phones and tablets. Fol-
lowing [26], we employ 179,496 images from 150 subjects
as the target set. EyeDiap is collected in laboratory environ-
ments with screens and 3D floating balls. Following [2], we
use 6,400 images using screen targets as target set and are
manually checked by original authors. We process all the
face images using the normalization method [54] to elimi-
nate the variability of the camera’s degree of freedom.

4.2. Implementation Details
We implement our method using Pytorch. We use Real-

ESRGAN model [47] as the face enhancer and Resnet18
as the backbone of gaze estimators. During the training on
source data, we pretrain the face enhancer on FFHQ with
the same settings as in [47] and finetune it for 20000 iter-
ations with a batch size of 16. We train the gaze estimator
using the Adam [25] optimizer with a learning rate of 10−4

until 40 epochs. The batch size is 128. We chose K = 10
gaze estimators of the last 10 epochs. During the source-
free adaptation, we use the Adam optimizer with a learning

rate of 2 × 10−5 and set γ in Eq.(9) as 0.01. We randomly
choose 100 unlabelled samples from target domain and re-
ported average results of 100 repeated trials. The batch size
is 20 and the model is trained for 10 epochs.

4.3. Effectiveness of UnReGA Framework
The UnReGA framework has three key components:

face enhancement, source-free adaptation, and mean esti-
mator with averaged parameters. We validate the effective-
ness of each component by investigating variants of Un-
ReGA with or without some of its components.

Table 1 reports the angular gaze errors of the baseline
method and the variants of UnReGA. For baseline, we train
a ResNet18 as the gaze estimator with the source data for
40 epochs. For ModelAvg, we average the parameters of
gaze estimators from the last 10 epochs during the training
of baseline. The mean estimator is evaluated on different
target domains. As shown in Table 1, compared with the
baseline, ModelAvg reduces the error by 4.2%, 8.0%, 6.4%
from the source domain DE to target DM , DD and DC ,
and by 4.6%, 8.7%, 7.4% from source domain DG to target
DM , DD and DC . It indicates that averaging the parameters
is effective and contributes to better generalization ability.

EnhanceFace omits the source-free adaptation compo-
nent in UnReGA. It applies the face enhancer on both
source and target data, and trains the gaze estimator with
the enhanced source data and then employs the mean esti-
mator of the last 10 epochs on the enhanced target images.
As shown in Table 1, EnhanceFace further reduces the er-
rors when compared to ModelAvg. The improvements over
the baseline are 21.1%, 19.9%, 15.2%, 9.9%, 12.1%, 17.5%
on the six cross-domain tasks respectively. It indicates that
reducing the sample uncertainty by a face enhancer helps
reduce the domain gap and improves the performance on
cross-domain tasks considerately. It is worth noting that
EnhanceFace does not require any target samples, making
it feasible for use in domain generalization scenarios, where
target images are unavailable for adaptation.

UnReGA− omits the component of face enhancement
in UnReGA. As shown in Table 1, UnReGA− significantly
improves the performance of baselineand outperforms En-
hanceFace. It means that the source-free adaptation mecha-
nism is more effective than face enhancement and is crucial
in the proposed UnReGA framework.

UnReGA integrates all three components and is shown



Table 2. Comparison with SOTA cross-domain gaze estimations.
Results are reported by angular error (◦).

Method DE →DM DE →DD DG →DM DG →DD
Only Source 7.50 7.88 7.23 8.02
w/o source
PureGaze [5] 7.08 7.48 9.28 9.32
PnP-GA(oma) [34] 5.65 - 6.86 -
CSA† [48] 5.37 6.77 7.30 7.73
RUDA [2] 5.70 6.29 6.20 5.86
w/ source
Gaze360 [23] 5.97 7.84 7.38 9.61
GazeAdv [45] 6.75 8.10 8.19 12.27
PnP-GA [34] 5.53 5.87 6.18 7.92
CRGA† [48] 5.68 5.72 6.09 6.68
UnReGA− 5.35 6.06 5.58 5.84
UnReGA 5.11 5.70 5.42 5.80

† indicates the model employs Resnet50 [17] as the backbone.

to be with the best performance in Table 1.

4.4. Comparison with Cross-Domain Gaze Estima-
tion Methods

To evaluate the superiority of UnReGA, we compare it
with state-of-the-art (SOTA) cross-domain gaze estimation
methods with or without source data during the adaptation.

The adaptation methods without source data (source-
free adaptation) include: PureGaze [5] is a SOTA domain
generalization method for gaze estimation using gaze fea-
ture purification. CSA [3] is a SOTA source-free domain
adaptation method for gaze estimation using contrastive re-
gression. PnP-GA (oma) [34] is a SOTA unsupervised
domain adaptation for gaze estimation by outlier-guided
model adaptation. we implement it using only outlier loss
because other losses proposed by this method need source
data. RUDA [2] is a SOTA unsupervised gaze adaptation
method using rotation consistency.

The adaptation methods with source data (unsupervised
domain adaptation) include: GazeAdv [45] is a SOTA un-
supervised domain adaptation for gaze estimation by ad-
versarial learning. Gaze360 [23] is a SOTA unsupervised
gaze adaptation method by adversarial learning and pinball
loss. PnP-GA [34] is a SOTA unsupervised gaze adaptation
method by outlier-guided collaborative adaptation. CRGA
[3] is a SOTA unsupervised gaze adaptation method using
contrastive regression. For a more fair comparison, we use
100 target and source samples for adaptation with CRGA.

Table 2 shows the angular errors of UnReGA and other
methods on five cross-domain tasks. Both UnReGA−

and UnReGA outperform all the state-of-the-art source-free
adaptation methods. Besides, UnReGA outperforms all the
unsupervised gaze adaptation methods despite they use of
source data for adaptation. Moreover, even without en-
hancement, UnReGA− also shows superior performance
on these domain adaptation tasks, except for DE → DD,
slightly inferior compared to CRGA [48], which employs a
Resnet50 backbone and use source data during adaptation.

Table 3. Angular gaze errors (◦) of methods with pretrained or
finetuned face enhancers using different loss functions.

Method DE →DM DE →DD DG →DM DG →DD

pretrained 6.12 6.48 6.74 7.11
finetune w/ ℓgc 6.03 6.43 6.69 7.08

finetune w/ ℓgc+ℓg 5.92 6.31 6.52 7.05

Table 4. Mean angular gaze errors (◦) ± stand deviations for Un-
ReGAs with different loss functions in source-free adaptation.

Method DE →DM DE →DD DG →DM DG →DD

UnReGA−

w/o adaptation 7.50 7.88 7.23 8.02
ℓvm 5.48± 0.11 6.39± 0.17 5.65± 0.15 6.50± 0.23
ℓwpl 5.98± 0.17 6.10± 0.12 5.91± 0.14 6.01± 0.15
ℓvm + ℓpl 5.51± 0.17 6.13± 0.22 5.70± 0.08 5.92± 0.21
ℓvm + ℓwpl 5.35± 0.20 6.06± 0.17 5.58± 0.15 5.84± 0.18
UnReGA
w/o adaptation 5.92 6.31 6.52 7.05
ℓvm 5.19± 0.11 6.21± 0.23 5.56± 0.06 6.22± 0.11
ℓwpl 5.26± 0.09 5.81± 0.06 5.83± 0.08 5.92± 0.14
ℓvm + ℓpl 5.16± 0.10 5.75± 0.12 5.43± 0.06 5.96± 0.11
ℓvm + ℓwpl 5.11± 0.09 5.70± 0.16 5.42± 0.06 5.80± 0.12

4.5. Ablation Study

We investigate the effectiveness of each loss item during
the stages of training on source data and source-free adap-
tation in the UnReGA framework. Due to limited space, the
study of other hyperparameters is in suppl.

4.5.1 Loss Terms for Training on Source Data

We propose gaze loss ℓg and gaze consistency loss ℓgc to
finetune the face enhancer for keeping the gaze unchanged
in enhanced images (Sec.3.3). We investigate the effec-
tiveness of ℓg and ℓgc by comparing the methods with and
without them. For convenience, we follow the experimental
protocol as EnhanceFace in Sec. 4.3. Table 3 reports the re-
sults. The results demonstrate that both two losses improve
the baseline on four cross-domain tasks.

4.5.2 Loss Terms for Source-free Adaptation
We investigate the mechanisms of variance minimization
(with ℓvm) and pseudo-label supervision (with ℓwpl) in
source-free adaptation under both the settings as UnReGA−

and UnReGA in Sec. 4.3. Table 4 reports the mean gaze
errors with different losses. The results demonstrate that
adaptation ℓvm or ℓwpl individually achieve performance
improvement over baseline and adaptation with ℓvm + ℓwpl

achieve the best performance. Besides, to verify the effec-
tiveness of weight in ℓwpl, we substitute ℓwpl with ℓpl =
1
K

∑K
i=1 |ĝt

k − pt
T | by removing ωt in Eq.(8). Results in

Table 4 show the advantage of weight in ℓwpl.
To investigate why adaptation with both ℓvm and ℓwpl

outperforms adaptation with only one of them, we plot the
trend of gaze errors of adaptation with different losses over
iterations in Fig.4. The results show that utilizing either ℓvm
or ℓwpl individually can be beneficial for adaptation. How-



+

Figure 4. The trend of angular errors (◦) over iterations with differ-
ent loss functions in source-free adaptation stage. The light colors
denote the standard deviation of 100 times experiments. The ex-
periments are conducted on DE → DM under UnReGA− setting.
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Figure 5. Examples of the high quality and low quality images and
their image quality (IQ), model uncertainty (MU) and gaze errors
(Err). The blue and green arrows denote the gaze labels and the
predictions respectively.

ever, each loss function has its advantages and disadvan-
tages. Specifically, solely employing ℓvm can significantly
reduce gaze errors but errors may increase after a certain it-
eration, which is challenging to identify without access to
labeled validation data. Conversely, utilizing ℓwpl alone can
maintain stable gaze errors after convergence, but its perfor-
mance is not as excellent as the best iteration of ℓvm alone.
Combining ℓvm and ℓwpl during adaptation can leverage
the strengths of both loss functions, resulting in satisfactory
performance and stable results during optimization.

4.6. Discussion about Uncertainty Reduction

To discuss how image quality influences the model un-
certainty and gaze errors, we visualize some high quality
and low quality examples and their enhanced pairs in Fig.5.
We report their image quality (IQ), model uncertainty (MU)
and gaze errors (Err). We measure the image quality (IQ)
with a popular blind image quality assessment method [52]

Figure 6. Average model uncertainty and average gaze errors of
samples grouped according to the percentile of the baseline’s un-
certainty.

and output the model uncertainty and gaze errors with a set
of gaze estimators. Compared with high-quality images,
low-quality samples tend to have higher model uncertainty
and higher gaze errors. After face enhancement on sam-
ples, the model uncertainty of both high-quality and low-
quality images decreases and so do the gaze errors. More-
over, the enhancement of low-quality images brings more
performance gain than high-quality images.

To understand the correlation between reducing model
uncertainty and reducing gaze errors, we illustrate the
model uncertainty and gaze errors of applying EnhanceFace
and UnReGA on different samples grouped by model un-
certainty in Fig.6. Specifically, we compute the model un-
certainty of samples in DM with a set of gaze estimators
trained with DE and sort the samples by the model uncer-
tainty in ascending order and group them by every 10-th
percentile. We take the set of gaze estimators as the base-
line and apply EnhanceFace and UnReGA on DE → DM .
Subsequently, we calculate the average gaze errors and av-
erage model uncertainty for each group. The results indi-
cate that both EnhanceFace and UnReGA can consistently
reduce model uncertainty and gaze errors for groups with
different uncertainty over baseline. Moreover, the higher
uncertainty of the samples, the more uncertainty and errors
can be reduced by EnhanceFace and UnReGA.

5. Conclusion
We present a novel uncertainty reduction gaze adapta-

tion (UnReGA) framework for adapting gaze estimators on
the unlabelled target domain without source data. UnReGA
improves gaze estimation performance on the target data by
reducing uncertainty on the target. Our source-free adapta-
tion method shows significant performance improvements
over baseline and also outperforms the SOTA gaze adap-
tation methods using source during adaptation on adapta-
tion tasks. In the future, the connection between face en-
hancement and the minimization of sample uncertainty can
be discussed by formulating sample uncertainty mathemati-
cally and the proposed uncertainty reduction method can be
explored on other cross-domain regression problems.
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