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Abstract— Learning an accurate and robust eye semantic
segmentation model generally requires enormous training data
with delicate segmentation annotations. However, labeling the
data is time-consuming and manpower-consuming. To address
this issue, we propose to segment the eyes using unlabelled eye
images and a weak empirical prior on the eye shape. To make
the segmentation interpretable, we leverage the prior knowl-
edge of eye shape by converting the self-supervised learned
landmarks of each eye component to the segmentation maps.
Specifically, we design a symmetrical auto-encoder architecture
to learn disentangled representations of eye appearance and
eye shape in a self-supervised manner. The eye shape is
represented as the landmarks on the eyes. The proposed method
encodes the eye images into the eye shapes and appearance
features and then it reconstructs the image according to the eye
shape and the appearance feature of another image. Since the
landmarks of the training images are unknown, we require the
generated landmarks’ pictorial representations to have the same
distribution as a known prior by minimizing an adversarial
loss. Experiments on TEyeD and UnitySeg datasets demonstrate
that the proposed self-supervised method is comparable with
supervised ones. When the labeled data is insufficient, the
proposed self-supervised method provides a better pre-trained
model than other initialization methods.

I. INTRODUCTION

Understanding human eyes plays an important role in
medical application, human-computer interaction, virtual re-
ality, biometric security, and other areas. Explicitly parsing
eye images into different eye components implies analyzing
the semantic constituents (e.g., pupil, iris and sclera) of
human eyes, and is useful for a variety of tasks, including
gaze tracking, iris recognition, pupil diameter estimation, etc.
All these applications require the eye parsing/segmentation
methods to be robust to the various poses, illuminations, and
other environments.

Efforts have been made in developing eye segmentation
methods during the last decades. Some early works propose
to segment sclera [7] or iris [1] using image processing
methods, including edge detection [30] and ellipse fitting
[8]. With the handcrafted features, they usually determine the
sclera or iris regions by adjusting some thresholds according
to the distribution of the data. These approaches highly
depend on stable environments and are likely to fail in new
distributed data. Recently, ascribe to the development of deep
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Fig. 1. Main idea of the proposed method (LS2E-Seg). The input eye image
is translated into its landmarks’ pictorial representation. Then we convert
the predicted landmarks to the segmentation map. Since the landmark
annotations of the input images are unknown, we force the generated
landmarks in-distinguishable among the real ones.

learning, appearance-based methods based on Convolution
Neural Network (CNN) have gained popularity and achieved
the state-of-the-art accuracy on eye semantic segmentation.
However, a well-trained segmentation network, e.g., SegNet
[3] and UNet [27], requires diverse training images with
high-quality annotations about the eyes’ regions. Labeling
the segmentation needs the annotators to draw a fine edge of
the target region. It takes minutes to complete the labeling
of one image. Therefore, some works are proposed to seg-
ment the images in an unsupervised manner, e.g., IIC [18],
PiCIE [6]. Although without annotations, most unsupervised
segmentation methods cannot determine whether some small
regions or super-pixels should be merged or not. It is also
cumbersome to determine what the region stands for.

To this end, we propose a Landmark-aware Self-
Supervised Eye Segmentation (LS2E-Seg) method to seg-
ment pupil, iris, and sclera regions from eye images leverag-
ing unlabelled images of eyes. To make the segmentation
interpretable, we first learn the eyes landmarks and then
convert the landmarks of each eye component to the segmen-
tation maps. To learn the landmarks, inspired by the recent
self-supervised landmarks learning framework [17], we train
the landmark detector with unlabelled images and a set of
landmarks’ pictorial representation, which are not the labels
to the training images but serve as a prior distribution of
eye landmarks. Fig. 1 demonstrates the main idea of LS2E-
Seg. As shown in Fig. 1, given an eye image, an image-
to-image translation network [15] is used to generate its
landmarks’ pictorial representation. To guarantee that the
generated pictorial representation stands for the landmarks
of eyes’ components, we use a discriminator to judge if the978-1-6654-3176-7/21/$31.00 ©2021 IEEE



generated one is real or fake. Then, we convert the predicted
landmarks of pupil, iris, and sclera to a segmentation map
using ellipse fitting. Therefore, we obtain the segmentation of
each eye component without annotations. Our contributions
are summarised as follows:

1. We propose a self-supervised method to segment the
pupil, iris, and sclera of the eye images according to the self-
supervised detected landmarks. To the best of our knowledge,
it is the first work to do eye semantic segmentation in a self-
supervised manner.

2. The proposed method learns the landmarks by disentan-
gling the shape (landmarks) and appearance of the eyes in an
image reconstructing task. The eye segmentation is converted
from the detected landmarks and thus it is interpretable.

3. Experiments on two datasets show the effectiveness
of the proposed self-supervised method, which achieves
comparable results with other supervised methods.

II. RELATED WORK
A. Eye semantic segmentation

Since the eye semantic segmentation is considered as a
sub-problem of an image segmentation task, general image
segmentation methods were applied to segment eyes. Lian
et al. [22] proposed to use the attention mechanism on U-
Net [27] to guide the model to learn discriminative features
for iris segmentation. Naqvi et al. [24] presented ScleraNet,
a residual encoder-decoder network based on SegNet[3].
To improve muti-class segmentation for eyes, Perry and
Fernandez [26] proposed to leveraged dilated and asymmetric
convolution, meanwhile Kansal et al. [19] chose to utilize
squeeze-and excitation [14] block.

Besides applying the general segmentation method, some
works utilized the unique characteristics of eye images. Kim
et al. [20] proposed to add a heuristic filter after segmentation
network because the sclera covered the iris, and iris wrapped
pupil. Fuhl et al. [11] proposed a combined convolutional
neural network architecture for eyelid landmark, pupil ellipse
regression together with pupil area and eyelid area segmen-
tation. Kothari et al. [21] proposed EllSeg framework for
simultaneous segmentation and ellipse parameter prediction
for both iris and pupil regions.

The deep learning based works rely on large, curated
training datasets of eye images with well-annotated labels
and have difficulty with generalizing unconstrained environ-
ments. Learning with limited or no external supervision for
eye semantic segmentation is still a challenge.

B. Unsupervised segmentation methods
Unsupervised or self-supervised techniques have been

explored recently to conduct image semantic segmentation
without external supervision. A few works consider unsuper-
vised semantic segmentation as a problem of clustering pixel-
level features. Both Ji et al. [18] and Ouali et al. [25] leverage
an end-to-end approach maximizing the discrete mutual
information between augmented image pairs to learn a pixel-
level clustering function and then obtain the probabilities
of pixels over classes. PiCIE [6] conduct pixel-level feature
clustering using invariance to photometric transformations

and equivariance to geometric transformations. However,
these methods can neither leverage the prior information of
eye shape nor segment eye images for specific interpretable
parts (pupil, iris and sclera) we want.

C. Unsupervised Keypoint Detection
There have been a few attempts in the literature to tackle

keypoint detection under the unsupervised setting. Thewlis
et al. [29] propose to learn sparse viewpoint invariant
landmarks using the equivalence constraint and develop the
method to a dense situation [28]. Zhang et al. [32] use an
auto-encoder paradigm to learn explicit structural representa-
tions as landmarks. Jakab et al. [16] develop the auto-encoder
formulation by using conditional image generation and a
bottleneck to limit the geometric information flow. Based on
[16], Jakab et al. [17], the most related work of ours, make
use of an interpretable keypoint prior to learn ’semantically
meaningful’ keypoint directly. Inspired by [17], we extended
the idea to the self-supervised eye semantic segmentation
by combining the self-supervised keypoint detector with
segmentation fitting.

III. METHODS
We aim to learn a function that maps an eye image to its

semantic segmentation map without annotations. However,
most general unsupervised segmentation methods can not
produce interpretable segmentation maps directly. To conduct
the interpretable self-supervised eye semantic segmentation,
we first detect the landmarks of the iris, pupil and sclera
and then using the landmarks to induce the segmentation.
In the training procedure, we train a self-supervised land-
mark detector using a symmetric self-supervised learning
framework with pairs of unlabeled eye images and a set
of prior keypoints’ pictorial representation. In the inference
procedure, given an image, we first predict the landmarks
of eyes and then convert the landmarks of each component
(iris, pupil and sclera) into its corresponding segmentation
map. Below, we introduce the two procedures in details.

A. Training the self-supervised landmark detector

We learn interpretable keypoints of eyes to identify the
contours of iris, pupil and sclera. To avoid using the key-
point labels of images, we use a symmetrical auto-encoder
architecture to learn disentangled representations between the
appearance and shape of the eyes. The shape is depicted as
the landmarks or keypoints of the eye.

Figure 2 (left) illustrates the self-supervised training
framework. As can be seen, it takes two different images
(I1, I2) of the same eye from a video clip as the inputs. Each
of the image is fed into the appearance encoder Ea and the
keypoint encoder Ek, respectively. Ek outputs the keypoint
pictorial representation K. K contains the information of
the eye shape (keypoint) and is spatially aligned with I .
To make K represent the shape (keypoint) information like
Kreal which are sampled from keypoint prior, we require the
discriminator D to judge if the generated K is real or fake.
The keypoint bottleneck compresses K into the coordinates
of landmarks and reconstructs a purified keypoint pictorial
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Fig. 2. Framework of the proposed symmetric landmark-aware self-supervised eye semantic segmentation method. In training procedure, the unlabelled
input images (I1, I2) of the same eye are encoded by Ek and Ea to get the landmark and appearance features, respectively. Ek outputs the keypoint pictorial
representation K. The keypoint bottleneck compresses K into the coordinates of landmarks and reconstructs a purified keypoint pictorial representation
K̂. The inputs images are reconstructed by a generator G according to their own purified keypoint pictorial representation and the swapped appearance
feature. To make K represent the shape (keypoint) information like Kreal, we require the discriminator D to judge if the generated K is real or fake. In
inference procedure, the eye image I is translated to K by Ek . K is regressed to the points coordinates V by ϕ. Keypoints V is used for fitting pupil,
iris and sclera to obtain the final eye semantic segmentation map S.
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Fig. 3. Examples of the inputs or generated images during the training (left) and the converted eye semantic segmentation map in inference (right).

representation K̂. Ea outputs the appearance feature. Ac-
cording to their own purified keypoint pictorial representation
and the swapped appearance feature, the inputs images are
reconstructed by a generator G. This is because I1 and I2
are from the same eye under a similar environment, and
should have the same appearance feature. If we swap their
appearance feature, we can still reconstruct I1 or I2 .

Below, we present details of the components keypoint
pictorial representation, keypoint representation prior, key-
point representation bottleneck, and the objective function
for learning.

1) Keypoint Pictorial Representation: To learn the spa-
tial structure of the eyes, we design the keypoint encoder
Ek as an image translation network. Ek translates an eye
image to a pictorial representation of the keypoints, which
is an image spatially aligned to the input eye image. The
generated pictorial representation represent the information
of keypoints. It is composed of the edges that connect two
keypoints and looks like an image of the sketched structure
of an eye. In Fig. 2, K1 and K2 are two examples of the
keypoint pictorial representations.

Mathematically speaking, we denote the keypoint pictorial

representation as K ∈ RW×H , where W and H is the width
and the height of the input image. The keypoint pictorial
representation K could be generated according to the 2D
keypoint coordinates V = [v1;v2; · · · ,vn], where n is the
number of keypoints and vi = (xi, yi) ∈ N2 is the coordinate
of the i-th keypoint. We denote the grid of pixel coordinates
as Ω = {1, 2, ...,H} × {1, 2, ...,W}. The value at each
position u ∈ Ω of the keypoint pictorial representation K
is computed as

ku = exp(−γ min
(vi,vj)∈E,
r∈[0,1]

||u− rvi − (1− r)vj ||2), (1)

where ku is the element of K at position u. E is the set of the
pre-defined edges with the start-end keypoint pairs (vi,vj)
and γ is 0.2 in our experiments. When the pixel u is on the
edge that connects vi and vj , u can be represented as a linear
combination vi and vj . It means that there exist an r ∈ [0, 1]
such that u = rvi+(1−r)vj , and ||u−rvi−(1−r)vj ||2 = 0.
Then, ku = 1 and it looks bright in the keypoint pictorial
representation. When the pixel u is far away from all the
edges in E , ku is around 0. It looks dark in the pictorial
representation. Therefore, K is visualized as smooth lines



with the ends as the keypoint pairs.
It is noted that we do not directly use the 2D keypoint

coordinates V as the output of Ek to represent the keypoint
information, because it is easier to train an image-to-image
translator than to train an image-to-vector regressor without
supervision. Using an image-to-image translator, we can take
advantage of the inductive bias in CNN that assumes a certain
type of spatial structure present in the input image [23].

2) Keypoint Representation Prior: Since we do not have
the ground truth of the output of Ek, we leverage a keypoint
representation prior which is a set of landmark pictorial rep-
resentations computed from the landmarks of real eye images
other than the training images. The keypoint representation
prior is used to make the output of keypoint shape encoder
Ek looks like the expected keypoint pictorial representation
rather than other forms. We define a discriminator D to
distinguish whether the keypoint pictorial representation K
generated by Ek are from the keypoint representation prior
to distribution p(K) in order that the distribution of Ek’s
output can be closed to p(K).

Mathematically speaking, let us assume the keypoint rep-
resentation prior as Kreal = {Ki}Ni=1, where N is the size
of the prior set. Dtr = {(Ii1, Ii2)}Mi=1 denotes the training
set of unlabelled image pairs, where M is the number of
pairs. Then, similar to WGAN [2], we could optimize the
parameters of the keypoint encoder Ek and discriminator D
by minimize the maximum of an adversarial loss

min
Ek

max
D

Ladv(D,Ek) = min
Ek

max
D

1

N

∑
Ki∈Kreal

D(Ki)

− 1

2M

∑
(Ii1,Ii2)∈Dtr

(D(Ek(Ii1)) +D(Ek(Ii2))) , (2)

where Ek(Ii1) and Ek(Ii2) are the generated keypoint
pictorial representation of the input image Ii1 and Ii2,
respectively. D(Ki) denotes the output of the discriminator
given keypoint pictorial representation Ki.

3) Keypoint Representation Bottleneck: To purify the
output of Ek as the information of landmarks, we adopt a
keypoint representation bottle to prevent the keypoint picto-
rial representation containing appearance information. As can
be seen in Fig. 2, in the keypoint bottleneck, we compress
the keypoint pictorial representation K1 to the coordinates of
the keypoints V1 through a mapping function ϕ. Then, we
reconstruct a purified keypoint pictorial representation K̂1

according to V1. For notation conveniency, we denote the
operation of reconstruction as ψ(V1) = K̂1, where the value
of K̂1 at the position u is computed using Eq. (1). Similarly,
we obtain the purified keypoint pictorial representation K̂2

of the other image I2.
We implement ϕ as a neural network regressor and pre-

train its parameters using training pairs V = {Vi
real}Ni=1,

where Vreal is the real eye keypoints. N is the size of the
training set. We train the regressor network ϕ by

min
ϕ

Lreg(V) = min
ϕ

N∑
i=1

||Vi
real − ϕ(ψ(Vi

real))||2, (3)

where we compute the keypoint pictorial representation
ψ(Vi

real) from Vi
real and re-generate the landmarks by

ϕ(ψ(Vi
real)). ϕ is optimized by minimizing the discrepancy

between the original landmarks and generated ones.
4) Objective Function for Learning: To train the self-

supervised landmarks detector, we first pre-train the regressor
ϕ by (3), then we alternatively update (1) the landmarks
encoder Ek, appearance encoder Ea, and the generator G,
(2) the discriminator D, (3) the regressor ϕ.

The landmarks encoder Ek, appearance encoder Ea,
and the generator G are updated by the objective function
using the unlabelled training image pairs and the keypoint
prior:

min
Ek,Ea,G

Lrec + Lcons + Ladv, (4)

where Lrec is the image reconstruct loss. Given Dtr =
{(Ii1, Ii2)}Mi=1 as the training set of unlabelled image pairs,
where M is the number of pairs, the reconstruct loss is
formulated as

Lrec =
1

2M

M∑
i=1

||f(Îi1)− f(Ii1)||2 + ||f(Îi2)− f(Ii2)||2

+
1

2M

M∑
i=1

||Îi1 − Ii1||1 + ||Îi2 − Ii2||1 (5)

where Îi1 = G(ψ(ϕ(Ek(Ii1))), Ea(Ii2)) is the recon-
structed image of Ii1 by generator D according to the
purified landmark representation of Ii1 and the appearance
feature of Ii2. Similarly, the reconstructed image Îi2 =
G(ψ(ϕ(Ek(Ii2))), Ea(Ii1)). f is a pretrained VGG feature
extractor network. The first summation item force recon-
structed image features rather than pixels similar to original
images, which make learning fast and robust. The second
summation item keeps reconstructed images and original
images spatially aligned, which is important to keypoint
pictorial representation learning.

Lcons is the consistent loss that makes the output keypoint
pictorial representation of Ek as purified as possible. It is
formulated as

Lcons =
1

2M

M∑
i=1

2∑
j=1

||Ek(Iij)− ψ(ϕ(Ek(Iij)))||1. (6)

Ladv is the adversarial loss described in Eq. (2) with fixed
discriminated D.

The discriminator D is updated by maximizing the
adversarial loss Ladv defined in Eq. (2) with fixed landmark
encoder Ek by maxD Ladv(D,Ek).

The regressor ϕ is updated by the objective function
minϕ Lcons + Lreg , where Lcons is defined in Eq. (6) and
is computed with the unlabelled training images and fixed
landmarks encoder Ek. Lreg is defined in Eq. (3) and is
computed with the prior real landmarks.

B. Segmentation with map fitting

In the inference procedure, we use the obtained inter-
pretable keypoints V to create the semantic segmentation
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Fig. 4. Illustration of noisy S and noisy K. Ek outputs the noisy S when
we replace the keypoint representation prior to semantic segmentation map
prior.

maps, which is illustrated in Fig.2 (right). We fit the iris
landmarks and the pupil landmarks into ellipse by ellipse
fitting method and get the ellipse parameters. According to
the parameters, we draw the iris and pupil masks. We connect
eyelid landmarks point-by-point to get the contour of sclera
and draw the mask. Then, we integrate the masks of pupil,
iris and sclera into the semantic segmentation maps S.

Ellipse fitting finds the ellipse parameters A given the
coordinates of a series of points P = {p1,p2, ...,pn} on
the ellipse edge. We denote an ellipse by a second-order
polynomial:

F (p;A) = A ·dp = ax2+bxy+cy2+dx+ey+f = 0 (7)

where A = [a, b, c, d, e, f ]T , p = [x, y]T and dp =
[x2, xy, y2, x, y, 1]T . We minimize the sum of squared al-
gebraic distances on P with regard to ellipse parameters A:

min
A

N∑
i=1

F (pi;A)2. (8)

To avoid the trivial solution A = 06, we add a quadratic
constraint[4] on A as ATCA = 1, where C is a 6× 6 con-
straint matrix. The optimization problem (8) are formulated
as a generalized eigenvalue system and has a solution as

DT DA = λCA (9)

where D = [dp1 , dp2 , ..., dpn ]
T . Here we use the constraint

4ac− b2 = 1 on A like [9]. Fitzgibbon et al. [9] proved that
the system (9) produces exactly one positive eigenvalue λ∗

which corresponds to an ellipse and we take its correspond-
ing eigenvector A∗ as our solution.

C. Discussion of the landmarks and segmentation

Instead of translating the eye images into the landmarks
and then converting the landmarks into segmentation in our
method, an alternative way is to translate the eye image I into
the segmentation S directly in the self-supervised learning
framework. The change degrades the semantic segmentation
performance of our method, which will be shown in exper-
imental results in IV-F. Below, we discuss the reasons and
the advantages of our method.

First, we explicitly use the knowledge that pupils and iris
are ellipse shapes by segmentation fitting. However, if we

directly translate the eye image I to eye semantic segmen-
tation map S, the model can only learn this knowledge from
the real segmentation representation prior implicitly.

Second, under the unsupervised manner, it introduces more
noises by directly learning the semantic segmentation map
S than learning the landmarks. Fig 4 shows some examples
of the noisy K and the noisy S which are produced by Ek

when using eye semantic segmentation map S and keypoint
pictorial representation K as the representation prior form
respectively.

Last, it’s difficult to use a differentiable function ψ(V) =
S mapping keypoints to the segmentation maps like Eq. (1).
Although we can use a neural network to simulate this,
the introduction of a new neural network makes the back-
propagation in training progress more difficult.

IV. EXPERIMENTS

We compared our method with others under both unsuper-
vised and supervised protocols on both real (TEyeD [10])
and synthetic (UnitySeg) eye datasets. We also conducted
ablation experiments to validate the effectiveness of the key
components of our method and illustrate the effectiveness of
feature disentanglements.

A. Experimental settings
1) Dataset: TEyeD is the world’s largest unified public

data set of eye images collected by head-mounted devices.
It contains more than 20 million carefully annotated images
with 2D&3D landmarks, semantic segmentation, 3D eyeball
annotation and the gaze vector and eye movement types. We
randomly selected 126 videos containing 1.2M frames as
training and validation set and 32 videos containing 500k
frames as the test set. In our method, we did not use any of
the labels of the training data but randomly selected another
500k ground truth landmarks as the landmarks’ prior beyond
the selected training and test set.

UnitySeg is a synthetic eye image dataset created by us
using UnityEyes [31], a tool to generate labelled synthetic
eye images. UnitySeg contains 200k images of 100 different
subjects. In our method, the landmarks’ prior was selected as
the landmarks of 20 random subjects. The training set was
selected as the unlabelled eyes images of another 60 random
subjects. The test set was selected as another 20 subjects.

Only eyelid margin and iris landmark are accessible from
UnityEyes, we created the ground truth of segmentation by
using fit methods mentioned in Sec III-B according to the
provided landmarks. In this dataset, only the iris and sclera
segmentations were investigated.

2) Implementation Details: In our experiments, the de-
tailed structures of the keypoint encoder Ek, appearance
encoder Ea. the decoder G, the discriminator D and the
regressor ϕ are presented in the supplemental materials. It
is noted that other suitable networks can be substituted for
the network we use. The proposed method was implemented
using the deep learning toolbox PyTorch. The models are
trained by optimizing the objective using RMSprop with a
learning rate of 1 · 10−4. The batch size is 32 and the values



Fig. 5. Visualized examples. Keypoint pictorial representation and semantic segmentation results on the TeyeD (left four cols) and UnitySeg (right three
cols).These results are produced by our method directly without any additional labelled data. This figure is best viewed in color.

TABLE I
QUANTITIES RESULTS OF SELF-SUPERVISED METHODS (TOP THREE ROWS) AND SUPERVISED METHODS (OTHER ROWS) ON TEYED AND UNITYSEG.

Dataset TEyeD UnitySeg
Method paras mF1 mIoU IoU(iris) IoU(pupil) IoU(sclera) paras mF1 mIoU IoU(iris) IoU(sclera)
self-supervised
CycleGAN 3.125M 0.884 0.792 0.766 0.802 0.642 3.122M 0.905 0.827 0.835 0.703
LS2E-Seg 3.125M 0.938 0.884 0.890 0.913 0.789 3.122M 0.939 0.886 0.887 0.797
LS2E-Seg* 3.125M 0.951 0.907 0.908 0.924 0.825 3.122M 0.949 0.897 0.903 0.809
supervised
RITnet 0.25M 0.934 0.877 0.882 0.891 0.782 —— —— —— —— ——
Ek(Seg) 3.126M 0.955 0.916 0.919 0.933 0.832 3.122M 0.935 0.878 0.866 0.788
Resnet50 23.58M 0.960 0.923 0.922 0.925 0.859 23.57M 0.943 0.894 0.899 0.808
Unetsmall 4.321M 0.964 0.932 0.933 0.947 0.863 4.32M 0.963 0.931 0.937 0.877
Unet 17.268M 0.967 0.937 0.938 0.943 0.878 17.266M 0.966 0.936 0.942 0.886
Ek(lmk) 3.125M 0.968 0.938 0.941 0.948 0.878 3.122M 0.964 0.932 0.937 0.878
LS2E-Seg+Ek(lmk) 3.125M 0.971 0.944 0.944 0.953 0.889 3.122M 0.971 0.945 0.952 0.897
LS2E-Seg*+Ek(lmk) 3.125M 0.973 0.948 0.948 0.956 0.894 3.122M 0.972 0.947 0.953 0.901

of {λrec, λcons, λreg} are {1, 2, 0.5} respectively. The λadv
was initialized as 10 and was divided by a factor of 10 every
5000 iterations during the training. We resize the images in
TEyeD to 192×144 and images in UnitySeg to 200 ×120
as input resolution.

3) Measurement: We evaluate the eye semantic segmen-
tation performance of different methods and settings via IoU
(Intersection-Over-Union) scores and F1 scores. The IoU of
class i ∈{background, iris, pupil, sclera} is define as:

IoUi =
|Pi ∩Gi|
|Pi ∪Gi|

(10)

where Pi, Gi are respectively the region of class i from
the ground truth and predicted mask. We report the mean
IoU and mean F1 scores of four classes (iris, pupil, sclera,
background) and three single classes (iris, pupil, sclera) IoU
evaluated on the TEyeD and UnitySeg (without pupil IoU)
in our experiments.

B. Experimental results of eye segmentation

1) Under unsupervised protocol: In unsupervised proto-
col, we trained the proposed models with unlabelled data and
get the predicted landmarks and segmentation maps directly.
We compared with a CycleGAN [33] which is trained using
unpaired training images and segmentation maps not in the
training set. We did not compare with other unsupervised
segmentation methods because it is difficult to ensure that
the unsupervised segmented regions are the expected pupil,
iris, and sclera. Table IV reports the mean IoUs and F1 on
TEyeD and UnitySeg datasets using CycleGAN, LS2E-Seg

and LS2E-Seg*. LS2E-Seg was trained with unlabelled train-
ing images while LS2E-Seg* was trained with unlabelled
training and test images.

It is shown that Our LS2E-Seg and LS2E-Seg* outperform
the CycleGAN on segmentation metrics. In addition, training
our model using test images in a self-training manner can
improve the segmentation results on the test dataset.

We present the results of several supervised segmentation
methods in the following Sec IV-B.2. The results show that
our self-supervised methods LS2E-Seg and LS2E-Seg* are
comparable to other supervised methods.

We also evaluated our method qualitatively. We adopted
the LS2E-Seg method on TEyeD and UnitySeg datasets and
illustrated the learned landmarks and segmentations in Fig. 5.
Our method can obtain accurate eye landmarks and eye
segmentation maps in different conditions.

2) Under supervised protocol: To investigate whether the
proposed LS2E-Seg can further improve the supervised eye
segmentation, we evaluated the methods under supervised
protocol, where the annotations of landmarks or segmen-
tations for the training images were used. We compared
our self-supervised methods finetuned by training set with
RITnet, Resnet50, Unet, Unetsmall, Ek(Seg) and Ek(Lmk).

RITnet [5] is the champion method of the OpenEDS [12]
2019 eye semantic segmentation challenge. We reproduce
their method using the open source code.

Resnet50 is a keypoint detector based on Resnet50 [13]
trained by the MSE Loss. We convert the predicted keypoints
into eye segmentation maps as the segmentation results.

Unet is widely used in the medical image segmentation
area and has been proven effective sufficiently. We trained



the Unet model using the standard Cross Entropy loss.
Unetsmall is created by reducing the channels of Unet to a

quarter of the original model, so that the number of Unetsmall

model’s parameters is closed to the encoder Ek.
Ek(Seg) is created by changing the last convolution layer

of Ek from 1 channel to m channels for m part segmenta-
tion.We trained Ek(Seg) using cross entropy loss and take it
as the supervised eye semantic segmentation baseline.

Ek(Lmk) is a supervised model to generate a keypoint
pictorial representation for eye images. We used the ground
truth of keypoint pictorial representation to train Ek by the
Mean Square Loss and obtain Ek(Lmk). We obtain eye
semantic segmentation maps by the method mentioned in
Sec. III-B as the segmentation results.

We pre-trained our model LS2E-Seg and LS2E-Seg* with-
out labels and finetuned the self-supervised models using
the same way with Ek(Lmk). We named the two models as
LS2E-Seg+Ek(lmk) and LS2E-Seg*+Ek(lmk) respectively.
Table IV reports the mean IoUs and F1 on TEyeD and
UnitySeg datasets using supervised methods above.

Our results show LS2E-Seg-pretrained model provides a
good initialization for eye segmentation. When we fine-tuned
the pre-trained model LS2E-Seg on labelled training set, we
achieve higher mF1 and IoUs than Ek(Lmk) trained from
scratch. In addition, the results of LS2E-Seg* + Ek(Lmk) is
the highest in both two datasets.

The results also show that Ek(Lmk) can achieve com-
parable or better results than other segmentation methods
with fewer parameters. It indicates that converting the learned
keypoint pictorial representation to the segmentation map is
an effective method for eye semantic segmentation.

C. Discussion of the size of the prior set

In Sec IV-B, we use 500k ground truth landmarks in
TEyeD and 20k landmarks in UnitySeg as the landmarks’
prior set. To study the importance of the prior set size in
the proposed method, we use the varying proportion of the
original prior set to train LS2E-Seg. Table II show that our
method retains most of the performance when decreasing the
size of the prior set.

TABLE II
VARYING PROPORTION OF THE ORIGINAL PRIOR SET.

THE RESULTS ARE REPORTED BY MIOU.
Data proportion 1% 5% 10% 25% 50% 100%

TEyeD 0.843 0.848 0.856 0.867 0.877 0.884
UnitySeg 0.852 0.857 0.865 0.870 0.881 0.886

D. Discussion of the proportion of labels

To further show self-supervised pre-trained models are
better than random initialization for supervised training, we
finetuned our self supervised models with different propor-
tions of training data and compared the results with other
methods trained with the same labelled data from scratch. We
present the mIoU of different methods finetuned on different
proportion of labels in Fig. 6. LS2E-Seg− in Fig. 6 stands for
the LS2E-Seg trained with 5% of our prior set. The results
show that our LS2E-Seg-pretrained models can achieve better

0% 1% 5% 10% 20% 50% 100%
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Fig. 6. Comparison of different methods finetuned on different proportion
of labels, evaluated on TEyeD.

results with same labelled data or comparable results with
less labelled data than supervised methods. For example,
we use 5% data to finetune LS2E-Seg− initialization (0.927)
and obtain higher mIoU than supervised method Ek(Lmk)
using 5% data (0.915). And we achieve the performance of
Ek(Lmk) (0.938) trained with 100% data using only 10%
data with LS2E-Seg* (0.937).

E. Ablation Study

To investigate the effect of three key components in our
method: keypoints’ representation prior (P), keypoint repre-
sentation bottleneck (B), a symmetric architecture (S), we
ablate one of these components at once. We set λadv = 0 to
remove keypoints’ representation prior and remove keypoint
representation bottleneck by dropping functions ϕ and ψ.
In addition, we change the symmetric architecture by not
reconstruct I2 in (5).

Table III shows the effect of ablating one of these com-
ponents on our experimental datasets. Our results show that
the basic conditional auto-encoder method cannot finish the
self-supervised eye segmentation task without the keypoint
representation prior. In addition, the keypoint representation
bottleneck can significantly import the segmentation perfor-
mance (mIoU: 0.764 → 0.884 on TEyeD and 0.831 → 0.886
on UnitySeg). At last, the symmetric architecture is also
useful for our segmentation model (mIoU: 0.878 → 0.884
on TEyeD and 0.882 → 0.886 on UnitySeg).

F. Comparison with direct segmentation map translation

We analyze the reasons for not using eye segmentation
maps as our prior to force Ek to translate input images to
segmentation map directly in Sec III-C. Table IV shows the
results of direct segmentation map translation methods with
and without keypoint bottleneck and the results demonstrate
their disadvantages quantitatively. We find that the keypoint
representation bottleneck does not improve the results of
directly segmentation map translation methods, because we
only make use of a neural network for mapping the keypoint
coordinates to segmentation maps and the mapping is not as
accurate as the fitting method in Sec. III-B.



TABLE III
ABLATION STUDY ON TEYED (THE TOP) AND UNITYSEG (THE

BOTTOM). P: KEYPOINTS’ REPRESENTATION PRIOR. B: KEYPOINT

BOTTLENECK. S: SYMMETRIC ARCHITECTURE.
S B P mF1 mIoU IoU(iris) IoU(pupil) IoU(sclera)
✓ ✓ ✓ 0.937 0.884 0.890 0.923 0.789

✓ ✓ 0.933 0.878 0.881 0.917 0.782
✓ ✓ 0.861 0.764 0.751 0.671 0.669
✓ 0.480 0.338 0.329 0.186 0.197

S B P mF1 mIoU IoU(iris) IoU(pupil) IoU(sclera)
✓ ✓ ✓ 0.938 0.886 0.887 –— 0.797

✓ ✓ 0.934 0.882 0.884 -—- 0.793
✓ ✓ 0.905 0.831 0.783 –— 0.737
✓ 0.639 0.537 0.542 –— 0.144

TABLE IV
COMPARISON WITH DIRECT SEGMENTATION MAP TRANSLATION.

Datasets TEyeD UnitySeg
Methods mF1 mIoU mF1 mIoU

Ours 0.937 0.884 0.938 0.886
Segmentation Map Translation 0.894 0.813 0.909 0.838
Segmentation Map Translation

w/o keypoint bottleneck 0.901 0.824 0.912 0.842

G. Appearance and Shape Disentanglement

Given two arbitrary eye images I1 and I2, our model
can generate a novel image with appearance from I1
and eye shape from I2. The new image is created by
G(Ea(I1), Ek(I2)). In the same way, we can create the
new image G(Ea(I2), Ek(I1)). Fig. 7 shows some examples
combining one eye appearance with another eye shape.

V. CONCLUSIONS AND FUTURE WORKS

We presented a self-supervised eye semantic segmentation
method which has two procedures: training a self-supervised
landmark detector using a symmetrical auto-encoder archi-
tecture and an eye keypoint prior, converting the detected
landmark to the corresponding segmentation map. We have
shown the effectiveness of our method on TEyeD and
UnitySeg. This paper substitutes the unpaired keypoint prior
for paired data and labels in the eye-parsing area. In the
future, we would like to investigate more efficient methods
to utilize the unpaired prior.
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